In situ observation of fluoride-ion-induced hydroxyapatite-collagen detachment on bone fracture surfaces by atomic force microscopy.

نویسندگان

  • J H Kindt
  • P J Thurner
  • M E Lauer
  • B L Bosma
  • G Schitter
  • G E Fantner
  • M Izumi
  • J C Weaver
  • D E Morse
  • P K Hansma
چکیده

The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ∼90 nm × 60 nm to ∼20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ∼70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ∼10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Salinity on Hydroxyapatite Dissolution Studied by Atomic Force Microscopy

The complexity of bone tissue and the lack of techniques for directly probing bone surfaces in vivo have hindered studies on the fundamental mechanisms of bone mineral remodeling. Here, we addressed these issues by using single crystal hydroxyapatite (HAP) as a well-defined bone surface model and directly observe its surface using in situ atomic force microscopy. Specifically, we investigated t...

متن کامل

Microscopic study of hydroxyapatite dissolution as affected by fluoride ions.

Fluoride ions play a critical role in preventing tooth decay. We investigated the microscopic effects of fluoride ions on hydroxyapatite (100) surface dissolution using in situ atomic force microscopy. In the presence of 10 mM NaF, individual surface step retraction velocities decreased by about a factor of 5 as compared to NaF-free conditions. Importantly, elongated hexagonal etch pits, which ...

متن کامل

Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone

Antler bone displays considerable toughness through the use of a complex nanofibrous structure of mineralized collagen fibrils (MCFs) bound together by non-collagenous proteins (NCPs). While the NCP regions represent a small volume fraction relative to the MCFs, significant surface area is evolved upon failure of the nanointerfaces formed at NCP-collagen fibril boundaries. The mechanical proper...

متن کامل

Defect induced asymmetric pit formation on hydroxyapatite.

Defect sites on bone minerals play a critical role in bone remodeling processes. We investigated single crystal hydroxyapatite (100) surfaces bearing crystal defects under acidic dissolution conditions using real-time in situ atomic force microscopy. At defect sites, surface structure-dependent asymmetric hexagonal etch pits were formed, which dominated the overall dissolution rate. Meanwhile, ...

متن کامل

The Effects Of Interfacial Roughness On The Argon Ion Implanted Tantalum Films

In the present study, effect of interfacial roughness on the ion implanted Tantalum based surfaces has been investigated. The argon ions with energy of 30 keV and in doses of 1×1017 , 3×1017 , 5×1017 , 7×1017 , and 10×1017  (ion/cm2) have been used at ambient temperature. The Atomic Force Microscopy (AFM), analysis have been used to study and characterize the surfaces morphology. The effect of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 18 13  شماره 

صفحات  -

تاریخ انتشار 2007